
Laius: Towards Latency Awareness and Improved Utilization of
Spatial Multitasking Accelerators in Datacenters
Wei Zhang

Shanghai Jiao Tong University
zhang-w@sjtu.edu.cn

Weihao Cui
Shanghai Jiao Tong University

weihao@sjtu.edu.cn

Kaihua Fu
Shanghai Jiao Tong University

midway2018@163.com

Quan Chen
Shanghai Jiao Tong University
chen-quan@cs.sjtu.edu.cn

Daniel Edward Mawhirter
Colorado School of Mines

dmawhirt@mymail.mines.edu

Bo Wu
Colorado School of Mines

bwu@mines.edu

Chao Li
Shanghai Jiao Tong University

lichao@cs.sjtu.edu.cn

Minyi Guo
Shanghai Jiao Tong University

guo-my@cs.sjtu.edu.cn

ABSTRACT
Datacenters use accelerators to provide the signi�cant compute
throughput required by emerging user-facing services. The diurnal
user access pattern of user-facing services provides a strong in-
centive to co-located applications for better accelerator utilization,
and prior work has focused on enabling co-location on multicore
processors and traditional non-preemptive accelerators. However,
current accelerators are evolving towards spatial multitasking and
introduce a new set of challenges to eliminate QoS violation. To
address this open problem, we explore the underlying causes of
QoS violation on spatial multitasking accelerators. In response to
these causes, we propose Laius, a runtime system that carefully
allocates the computation resource to co-located applications for
maximizing the throughput of batch applications while guarantee-
ing the required QoS of user-facing services. Our evaluation on a
Nvidia RTX 2080Ti GPU shows that Laius improves the utilization
of spatial multitasking accelerators by 20.8%, while achieving the
99%-ile latency target for user-facing services.

KEYWORDS
Spatial multitasking, QoS, Improved utilization
ACM Reference Format:
Wei Zhang, Weihao Cui, Kaihua Fu, Quan Chen, Daniel Edward Mawhirter,
Bo Wu, Chao Li, and Minyi Guo. 2019. Laius: Towards Latency Awareness
and ImprovedUtilization of SpatialMultitaskingAccelerators inDatacenters.
In 2019 International Conference on Supercomputing (ICS ’19), June 26–28,
2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/3330345.3330351

Quan Chen and Minyi Guo are the members of Shanghai Institute for Advanced
Communication and Data Science, Shanghai Jiao Tong University. Quan Chen and
Minyi Guo are the corresponding authors of this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’19, June 26–28, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6079-1/19/06. . . $15.00
https://doi.org/10.1145/3330345.3330351

1 INTRODUCTION
Datacenters often host user-facing applications (e.g., web search [8],
web service [8], memcached [23]) that have stringent latency re-
quirements. It is crucial to guarantee that the end-to-end latencies
of users’ queries are shorter than a prede�ned Quality-of-Service
(QoS) target. With the quick advance of machine learning tech-
nology, emerging user-facing applications, such as Apple Siri [1],
Google Translate [2] and Prisma [4], start to use machine learning
technologies (e.g., Deep Neural Network) that are often compu-
tational demanding. Datacenters have adopted accelerators (e.g.,
GPUs, FPGAs and ASICs) to run these services so that they can
achieve the required latency target [6, 12, 22]. As prior work states,
user-facing applications experience diurnal user access patterns
(leaving the accelerator resources under-utilized for most of time
except peak hours) [7, 15]. The diurnal pattern provides a strong
incentive to co-locate user-facing services with batch applications
that do not have QoS requirements to improve utilization when the
query load is low.

Accelerator manufacturers are now producing spatial multitask-
ing accelerators for higher aggregated throughput for co-location
applications [5, 36, 43]. For instance, the latest Nvidia Volta and
Turing architectures allow kernels to simultaneously share certain
portions of the computational resources. Leveraging the new gen-
eration Multi-Process Service (MPS) [31], it is possible to allocate
a small percentage of computational resources (active threads) to
global memory bandwidth-bound applications and use most com-
putational resource to speed up the execution of the co-located
compute-intensive applications.

Improving utilization while guaranteeing QoS of user-facing
services at low load has been resolved for both CPU servers and
traditional GPU-out�tted servers [10, 11, 28, 30, 42, 47]. On CPUs,
applications contend for the cores, shared cache, and the main
memory bandwidth; On traditional GPUs, kernels are queued up for
the processing elements. On the other hand, our investigation shows
that the latency of a query on a spatial multitasking GPU is impacted
by the percentage of computational resources allocated to its
kernels, the scalabilities of the kernels, and the contention
on shared resources. Therefore, prior work is not applicable for

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Wei Zhang, et al.

spatial multitasking accelerators, because the latency of a user-
facing query at co-location on these hardwares is impacted by
di�erent factors.

For CPU co-location, priorwork falls into two categories: pro�ling-
based and feedback-based. The pro�ling-based method, such as
Bubble-Up [30], pro�les user-facing services and batch applications
o�ine to predict their performance degradation at co-location due
to shared cache and memory bandwidth contention, and identi-
�es the “safe” co-locations that do not result in QoS violation. The
feedback-based method, such as Heracles [28], builds a decision
tree to determine shared resource allocation in the next time period
according to the QoS feedback of user-facing services in the cur-
rent period. These studies assume that all the user-facing queries
have similar workloads and each query is processed by a single
thread [17, 28, 30, 45, 47]. For spatial multitasking GPUs on the
other hand, user-facing queries have di�erent workloads and may
have to run with various amounts of computational resources. Due
to the ignorance of the impact of the computational resources on
a query’s performance, prior studies on CPU co-location are not
applicable for the new generation spatial multitasking accelerators.

For application co-location on traditional accelerators, because
kernels from the co-located applications queued up for processing
elements, queuing-based methods (e.g., Baymax [11]) are proposed
to eliminate QoS violation due to the long queuing time. It pre-
dicts the duration of every GPU task, reserves time slots for each
user-facing query, and uses the remaining slots to process batch
applications. In contrary, on spatial multitasking GPUs, kernels
share processing elements spatially. The queuing-based method
does not apply for spatial multitasking accelerators.

It is challenging to determine the amount of computational re-
source allocated to each task of a user-facing query so that its QoS
can be satis�ed while maximizing resource utilization on spatial
multitasking GPUs. Since how kernels overlap with each other is
only known at runtime, an online methodology is required to elim-
inate QoS violation caused by contention on shared resources. To
this end, we propose Laius, a runtime system that is comprised of
a task performance predictor, a contention-aware resource allocator,
and a progress-aware lag compensator. When a user-facing query is
submitted, for each of its tasks k , the task performance predictor
predicts k’s duration and global memory bandwidth usage under
various computational resources. Based on the prediction, the re-
source allocator assigns the query “just-enough” resource so that
its QoS is satis�ed. When Laius assigns the remaining resource to
batch applications, contention-aware resource allocator limits the
global memory bandwidth usage of the batch kernels to eliminate
QoS violation due to global memory bandwidth contention. If the
query runs slower than expected due to the contention on other
shared resources, the progress-aware lag compensator allocates
more resource to the unexecuted kernels of the query to enforce
its QoS. In this work, we rely on the bandwidth reservation tech-
nique proposed in Baymax [11] to ensure that a user-facing query
can always transfer data in full speed, thus eliminates QoS viola-
tion which is resulted from PCIe bandwidth contention. The main
contributions of this paper are as follows.

• Comprehensive analysis of QoS interference on spa-
tial multitasking accelerators - We identify key factors

k1
k2

k3

k1
k2
k3

Timeline

(a) Traditional MPS (b) Volta MPS

Timeline

Task overlap

Figure 1: Comparison of the original MPS and Volta MPS.
that impact the end-to-end latency of a user-facing query.
The analysis motivates us to design a resource management
methodology for ensuring QoS while maximizing utilization.
• Enabling dynamic resource reallocation for spatialmul-
titasking accelerators - We propose process pool to ad-
just resource allocation between co-located applications at
runtime, while the native MPS does not support resource
reallocation during the execution of an application.
• Designing an online progress monitor for identifying
potential QoS violation - If a query runs slower than
expected so that it cannotmeet theQoS target, Laius allocates
it more computational resource to compensate the lag.

Our experiment on a Nvidia RTX 2080Ti GPU shows that Laius
is able to improve the throughput of batch applications by 20.8%
compared with state-of-the-art solution Baymax [11], while guar-
anteeing the 99%-ile latency of user-facing services.

2 RELATEDWORK
There has been a large amount of prior work aiming to improve
resource utilization while guaranteeing QoS of user-facing appli-
cations for CPU-colocation [17, 18, 30, 45, 47]. Bubble-Up [30] and
Bubble-Flux [45] identify “safe” co-locations that bound perfor-
mance degradation while improving chip multiprocessor utilization.
SMiTe [47] further extends Bubble-Up and Bubble-Flux to predict
performance interference between applications on simultaneous
multithreading (SMT) processors. However, all these interference
prediction techniques do not consider computational resource allo-
cation, thus do not apply to spatial multitasking accelerators.

For co-location on accelerators, MPS (Multi-Process Service)
scheduling [31] enables multiple applications sharing a GPU con-
currently. TimeGraph [24] and GPUSync [19] use priority-based
scheduling to guarantee the performance of real-time kernels. High
priority kernels are executed �rst if multiple kernels are launched
to the same GPU. GPU-EvR [26] launches di�erent applications
to di�erent streaming multiprocessors (SMs) on one GPU. Bay-
max [11] predicts the kernel duration and reorders the kernel based
on the QoS headroom of user-facing queries. However, they as-
sume that the accelerator is time-sharing and non-preemptive. The
time-sharing assumption results in low resource utilization com-
pared with Laius. KSM [48] predicts the slowdown of co-located
applications on spatial multitasking accelerators. However, it relies
on a broad spectrum of performance event statistics that are not
available on real system GPUs. And KSM is not able to identify the
“just-enough” computational resource quota for user-facing queries
as Laius does.

3 BACKGROUND AND MOTIVATION
3.1 Spatial Multitasking Accelerators
GPU is one of the most popular accelerators that support spatial
multitasking. A GPU often has multiple Streaming Multiprocessors

Laius ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

(SMs) that share the global memory. For instance, Nvidia RTX
2080Ti, a GPU of Turing architecture, has 68 SMs that can run
1024 active threads (i.e., computational resources) concurrently.
The SMs share a 12GB global memory.

Since a single kernel may not be able to utilize all the SMs and
other on-chip resources all the time [11, 27, 35, 41, 44], starting from
Kepler architecture [34], Nvidia proposed Multi-Process Service
(MPS) technique [31] to enable concurrent execution of kernels
from di�erent processes on the same GPU. If a kernel cannot oc-
cupy all the SMs, kernels from the co-located applications will use
the remaining SMs. Compared with the traditional solution that
executes kernels sequentially, MPS improves resource utilization,
overall GPU throughput and energy e�ciency [11, 31].

The traditional MPS technique does not provide an interface to
control how di�erent kernels’ thread blocks (TBs) are dispatched
into SMs. Only when a kernel is not able to use all computational
resources, the remaining threads are allocated to run other kernels.
In this case, as shown in Figure 1(a), kernels are very likely to be
still executed sequentially with little concurrent execution. In this
scenario, the on-chip shared memory and L1 cache etc. are still
under-utilized in most cases.

To better utilize the hardware, Volta and Turing architectures
introduce Volta MPS with new capabilities that allow multiple ap-
plications to share GPU computational resources simultaneously,
thereby increasing overall GPU utilization [31]. As shown in Fig-
ure 1(b), the new Volta MPS technique enables explicit GPU com-
putational resource allocation, where the full spatial multitasking
is possible.

3.2 Investigation Setup
We use Nvidia RTX 2080Ti as the experimental platform to perform
the investigation. Because our study does not rely on any speci�c
feature of 2080Ti, it applies for other spatial multitasking acceler-
ators. In this experiment, we co-locate user-facing services with
batch applications and schedule them with existing GPU resource
management techniques. We use applications in a DNN service
benchmark suite, Tonic suite [20], as user-facing services, and use
benchmarks in Rodinia [9] as batch applications.More details of the
experimental hardware and benchmarks are described in Section 8.

3.3 Problem of QoS Violation
Figure 2 shows the QoS violation of user-facing services at co-
location adopting the newVoltaMPS technique [32]. Adopting Volta
MPS, when n applications are co-located, we allocate computational
resources in two policies: even allocation and priority allocation.
With even allocation, each application is con�gured to use 200%/n
of the computational resources following the recommendation of
Nvidia [32]. With priority allocation, the user-facing service is
allocated 100% of the computational resources for QoS requirement
while each of the rest n � 1 applications is allocated 100%/(n � 1)
of the computational resources.

In this �gure, the x-axis shows the co-location pairs while the
�-axis presents the 99%-ile latency of the user-facing service normal-
ized to the QoS target. For example, dig +BFS presents the normal-
ized 99%-ile latency of the user-facing service dig when co-located
with the batch application BFS. As shown in the �gure, di�erent

batch applications cause varying amounts of performance degra-
dation to the co-located user-facing services. User-facing services
in 28 and 13 out of 48 co-locations pairs su�er from QoS viola-
tion with even allocation and priority allocation respectively. The
serious QoS violation is mainly due to the limited computational
resources allocated to user-facing queries and the shared resource
contention. Even if 100% of computational resources are allocated
to a user-facing service with priority allocation, its tasks may still
run concurrently with kernels of batch applications when its tasks
do not have enough warps. In this case, the concurrent data access
from global memory and shared memory degrades the performance
of user-facing queries, which results in QoS violation.

3.4 Factors that A�ect the End-to-End Latency
To understand the QoS violation problem at co-location, Figure 3
presents a real system execution trace of a user-facing service face
and four batch applications bfs on a spatial multitasking GPU. We
can see that the tasks from di�erent applications run concurrently.
Analyzed from this �gure, three key factors a�ect the end-to-end
latency of a user-facing query q at co-location.

(1) The percentage of computational resources allocated
to q. If the percentage is too small, there are not enough active
threads to process its tasks, resulting in its long latency. In con-
trary, if too many computational resources are allocated to q, batch
applications would su�er from the low throughput.

(2) The scalability of every task in q. A user-facing query
often has multiple tasks. The scalability of a task determines if it
can speed up when more computational resources are allocated to
the task. Allocating a large percentage of computational resources
to a non-scalable task would not reduce the latency of q.

(3) The contention on shared resources. Because tasks from
di�erent applications may run on the same SM [32], concurrent
tasks may contend for both shared memory within the SM and
global memory bandwidth. The contention may seriously degrade
the performance of co-located applications.

3.5 Challenges for Resource Allocation on
Spatial Multitasking Accelerators

Our real system investigation has shown that three factors a�ect the
latency of user-facing queries at co-location. However, identifying
the appropriate percentage of computational resources allocated to
a user-facing query is non-trivial due to the complex interference
behaviors on spatial multitasking accelerators. Speci�cally, there
are several key challenges to maximize the throughput of batch
applications while guaranteeing the QoS of user-facing services.

(1) The workload of user-facing queries varies - Since users
often submit queries with di�erent workloads, the percentage of
computational resources needed to complete a query within the
QoS target varies. There is not a �xed yet the best percentage of
computational resources existing for a user-facing service.

(2) The performance degradation varies due to the shared
resource contention - The performance degradation of a user-
facing query depends on how the tasks overlap with each other
during runtime between co-located applications. Because tasks
have di�erent pressures on the shared memory and global memory

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Wei Zhang, et al.

Figure 2: QoS violation of user-facing applications with Volta MPS that adopts even allocation and priority allocation.

Figure 3: Execution trace of user-facing service face and
batch applications BFS on a spatial multitasking GPU.

bandwidth, a user-facing query may su�er from di�erent perfor-
mance degradations in two runs even if it is co-located with the
same batch applications.

(3) An approach is required to enable resource realloca-
tion at runtime - The percentage of computational resources
allocated to an application is not con�gurable during its lifetime in
emerging spatial multitasking accelerators. However, a user-facing
query may su�er from QoS violation with the current computa-
tional resources due to shared resource contention. Therefore, an
approach is required to allocate a larger percentage of computa-
tional resources to a query during its execution.

4 LAIUS METHODOLOGY
In this section, we present Laius, which maximizes the throughput
of batch applications while guaranteeing the QoS of user-facing
services on spatial multitasking GPUs.

4.1 Design Principals of Laius
To address the challenges discussed in Section 3.5, we design and
implement Laius based on three principals.

• Laius should be able to predict the smallest percentage of
computational resource needed by a user-facing query to
return before the QoS target according to its input data and
the scalabilities of its tasks.
• Laius should be able to allocate the free computational re-
sources to batch applications for maximizing their through-
put while minimizing the performance interference to user-
facing queries.
• Laius should be able to boost the processing of user-facing
queries if they cannot complete before the QoS target due to
the interference from the co-located batch applications.

4.2 Laius Overview
Figure 4 demonstrates the design overview of Laius, a runtime
system consists of a task performance predictor, a contention-aware

resource allocator and a progress-aware lag compensator. The per-
formance predictor can precisely estimate the performance of a
task1 with di�erent computational resource quotas. The resource
allocator maximizes the throughput of batch applications while min-
imizing the possibility of QoS violation of user-facing queries due
to global memory bandwidth contention. Moreover, the lag com-
pensator monitors the progress of user-facing queries and speeds
up their execution if they run slower than expected.

As shown in Figure 4, Laius treats tasks of user-facing queries
(referred to “QoS tasks”) and tasks of batch applications (referred to
“non-QoS tasks”) di�erently. Once a QoS task is submitted, it starts
to run directly with “just-enough” resources. And when a non-QoS
task is submitted, it is �rstly pushed into a ready task pool. Laius
selects appropriate non-QoS tasks from the ready task pool and
executes them only when there are free computational resources.

In more detail, when a user-facing query q is received by a spatial
multitasking accelerator, Laius processes it in the following steps.

(1) Laius predicts the duration of q with di�erent computational
resource quotas, identi�es “just-enough” computational resource
quotas so that q can return within the QoS target based on pre-
trained duration models. All its tasks run with the same computa-
tional resource quota by default (Section 5).

(2) The contention-aware resource allocator allocates the re-
maining computational resources to execute non-QoS tasks. When
performing the allocation, Laius aims to maximize the throughput
of batch applications while alleviating QoS violation of q due to
the contention on global memory bandwidth and shared memory
(Section 6). As it is possible that multiple batch applications are
co-located with a user-facing service and tasks have divergent char-
acteristics, it is challenging to identify the appropriate allocation.

(3) Laius monitors the progress ofq. Ifq runs too slow to meet the
QoS, the lag compensator speeds up its execution by allocatingmore
computational resources to q’s to-be-executed kernels (Section 7).
The hard points in this step are identifying the new computational
resource quota for q’s to-be-executed kernels and performing the
adjustment because existing accelerators (e.g., Nvidia Volta and Tur-
ing GPUs) do not provide an interface to adjust the computational
resource allocation during the execution of q.

We propose theprocess pool to enable runtime computational
resource reallocation. Speci�cally, we launch a pool of daemon pro-
cesses that are con�gured to run with various accelerator resource
percentages (they are idle in most cases). If Laius decides to adjust

1A kernel or a library call is referred to a task.

Laius ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

Users

querys

Voice
recognition

Laius runtime system

QoS

Tasks pool

Offline phase

time

Bandwidth

IPC

SM SM...

Device
memory

GPU

Process
pool 1

Process
pool n

...

feedback

Goal:
maximize

throughput

Constraint:
Bandwidth

Scheduler

Trained
Models

Schedule

Non-
QoS

Batch applications

Process
pools

task

Figure 4: Design overview of Laius.
the resource con�guration for q during its execution, q’s to-be-
executed tasks are “hacked” and sent to a daemon process that is
con�gured to run with the corresponding resource con�guration.
The daemon process then submits these tasks to the accelerator on
behalf of q, achieving online resource reallocation.

5 TASK PERFORMANCE PREDICTION
We train a query duration model for each user-facing service and
a performance model for each task. A task performance model
predicts a task’s duration, global memory bandwidth consumption
and instructions per cycle (IPC). In a long-running datacenter, it
is acceptable to pro�le a service and build it a new model before
running it permanently. The pro�ling is done o�ine and no runtime
overhead is involved.

5.1 Predicting Query Duration
The query duration model is used to identify the “just-enough”
computational resources for a user-facing query. We use input data
size and percentage of computational resources as the features to
train the query duration model. The input data size re�ects the
workload of a query, and the percentage of computational resource
re�ects the computational ability used to process the query.

To build such a duration model for a user-facing service, we sub-
mit queries with di�erent inputs to the service, execute them with
di�erent computational resource quotas and collect the correspond-
ing duration. During the pro�ling, queries are executed in solo-run
mode to avoid performance interference due to shared resource
contention. For a user-facing service, we collect 100 ⇥ 10 = 1000
samples with 100 di�erent inputs, and 10 di�erent percentages of
computational resources (increasing from 10% to 100% with step
10%). We randomly select 80% of the samples to train the model
and use the rest to evaluate the accuracy of the trained model
(Section 5.3).

5.2 Predicting Task Performance
The contention on shared resources, such as global memory band-
width and shared memory, may result in the QoS violation of query
q when it is allocated ”just-enough” computational resources. To

eliminate the QoS violation and maximize the throughput of batch
applications, Laius needs to understand the duration, global mem-
ory bandwidth and IPC of each task. In this way, when Laius assigns
the remaining computational resources to non-QoS tasks, it can
prioritize the task with higher IPC and lower global memory band-
width usage (Section 6). By comparing the predicted duration of
each task with its actual processing time, the lag compensator can
detect potential QoS violation and identify the new resource alloca-
tion for q to complete before the QoS target (Section 7).

For a task t , we use instruction-per-cycle (IPC) to represent its
throughput on an accelerator. Let INS and T represent the number
of instructions and the processing time of t , respectively. Equation 1
calculates the IPC of t (denoted by IPCt). In the equation, Freq is
the running frequency of the accelerator. Note that, INS and T can
be obtained with Night Compute (Nvidia pro�ling tool) [3] directly
at runtime, Freq can be found from the design document.

I PCt =
I N S

T ⇥ Freq (1)

In user-facing services and batch applications, there are gener-
ally two types of computational tasks: hand-written kernel and
library call. Hand-written kernels are written by the programmers
from scratchpad, library calls are the invoking of highly optimized
common libraries (e.g.,cuDNN [13] and cuBLAS [33] on GPU).

It is challenging to predict the performance of the computational
tasks owing to the limited information that can be obtained before
they are executed. For the two types of tasks, as shown in Table 1,
di�erent characters are used to train their performance models.
For a hand-written kernel, the parameters we can obtain before it
is executed include its con�guration (grid size, block size, shared
memory size), input data size and compute resource quota. For a
library call, because the actual implementation and kernel con�gu-
rations are hidden behind the API, we need to treat all the kernels
in a library call as a whole.

5.3 Determining Low Overhead Models
The QoS target of a user-facing query is hundreds of milliseconds to
support smooth user interaction [16, 37]. Choosing modeling tech-
niques with low computation complexity and high prediction accu-
racy is crucial. We evaluated a spectrum of broadly used regression

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Wei Zhang, et al.

Table 1: Parameters used in the task performance modeling

Task type Parameters Dimension

Hand-written kernel

Input data size 1
Grid size (X*Y*Z) 3
Block size (X*Y*Z) 3
Shared memory size 1

Pct. of computational resource 1

Library call all parameters 1
Pct. of computational resource 1

d
ig

fa
ce

im
c

n
er

ch
k

p
o

s

av
g

0

20

40

60

er
ro

r
ra

te
(%

) DT
KNN
LR

Figure 5: The errors for predicting query duration.

A
ct

fw
d

A
d

d
T

en
so

r

C
o

n
v

F
w

d

P
o

o
lF

w
d

S
o

ft
m

ax

sg
em

m

0

20

40

60

er
ro

r
ra

te
(%

) DT
KNN
LR

(a) Library call

252.14 300.25

h
s-

ca
lc

u
la

te

p
f-

d
y
n
p
ro

c

k
m

-f
in

d
R

an
g
eK

b
fs

-k
er

n
el

m
d
-k

er
n
el

b
fs

-k
er

n
el

2

lu
d
-d

ia
g
o
n
al

lu
d
-i

n
te

rn
al

lu
d
-p

er
im

et
er

n
w

-s
h
ar

ed
1

n
w

-s
h
ar

ed
2

m
y
-k

er
n
el

av
g

0

20

40

60

er
ro

r
ra

te
(%

)

(b) Hand-written kernel

Figure 6: Errors of predicting the task duration.

models for the task performance prediction: KNN (k-nearest neigh-
bors) [21], LR (Linear regression) [40] and DT (Decision Tree) [38].
DNN (Deep Neural Network) is famous for its high prediction ac-
curacy. However, the prediction time of existing DNNs [46] is too
high to be used at runtime.

To construct the training and testing datasets for our prediction
model, we have collected a large number of samples while randomly
choosing 80% of them to train the model and using the rest for
testing. The prediction error is measured by the Equation 2.

Error =
|Predicted �alue �Measured �alue |

Measured �alue
(2)

Figure 5 shows the errors of predicting query duration and data
transfer duration on the test set with KNN, LR, and DT. Observed
from this Figure, DT and KNN are accurate for query duration
prediction, with the prediction error lower than 5%. Besides the
accuracy, we measure the time of performing a prediction using
KNN, LR, and DT. The time of performing a prediction using KNN
is longer than 2 milliseconds, while the time of prediction using
DT is 0.47 millisecond. Laius adopts DT to train the query duration
model for user-facing services.

Figure 6, Figure 7 and Figure 8 present the errors of predicting
the duration, global memory bandwidth usage, and IPC of each task
with KNN, LR, and DT. From three Figures, we can �nd that LR has
poor accuracy for predicting the duration of hand-written kernels,
global memory bandwidth usage of the library call. In contrary,

70.96

A
ct

fw
d

A
d

d
T

en
so

r

C
o

n
v

F
w

d

P
o

o
lF

w
d

S
o

ft
m

ax

sg
em

m

0

20

40

60

er
ro

r
ra

te
(%

) DT

KNN

LR

(a) Library call

h
s-

ca
lc

u
la

te

p
f-

d
y
n
p
ro

c

k
m

-f
in

d
R

an
g
eK

b
fs

-k
er

n
el

m
d
-k

er
n
el

b
fs

-k
er

n
el

2

lu
d
-d

ia
g
o
n
al

lu
d
-i

n
te

rn
al

lu
d
-p

er
im

et
er

n
w

-s
h
ar

ed
1

n
w

-s
h
ar

ed
2

m
y
-k

er
n
el

av
g

0

20

40

60

er
ro

r
ra

te
(%

)

(b) Hand-written kernel

Figure 7: Errors of predicting the global memory bandwidth
usage of tasks.

A
ct

fw
d

A
d

d
T

en
so

r

C
o

n
v

F
w

d

P
o

o
lF

w
d

S
o

ft
m

ax

sg
em

m

0

20

40

60

er
ro

r
ra

te
(%

) DT
KNN
LR

(a) Library call

h
s-

ca
lc

u
la

te

p
f-

d
y
n
p
ro

c

k
m

-f
in

d
R

an
g
eK

b
fs

-k
er

n
el

m
d
-k

er
n
el

b
fs

-k
er

n
el

2

lu
d
-d

ia
g
o
n
al

lu
d
-i

n
te

rn
al

lu
d
-p

er
im

et
er

n
w

-s
h
ar

ed
1

n
w

-s
h
ar

ed
2

m
y
-k

er
n
el

av
g

0

20

40

60

er
ro

r
ra

te
(%

)

(b) Hand-written kernel

Figure 8: Errors of predicting the IPC of tasks.

Qos Task

Non-Qos Task2

Percent
Schedule

Accelerator Timeline

Knapsack
Schedule

Non-Qos Task3

Non-Qos Task1
Non-Qos Task Queue

Qos Task Queue

Execute with Own GPU Resource

Resource
Feedback

Schedule

Figure 9: Contention-aware resource allocation in Laius.

KNN and DT are accurate for predicting durations, global memory
bandwidth usage, and IPC of both library calls and hand-written
kernels. Because DT has a shorter time to perform a prediction than
KNN according to our measurement, we use DT as the modeling
technique to train the kernel performance model.

6 CONTENTION-AWARE RESOURCE
ALLOCATION

In this section, we present contention-aware resource allocator
that allocates computational resources to co-located applications.
The allocator aims to maximize the throughput of co-located batch
applications while avoiding the performance interference to user-
facing queries due to serious global memory bandwidth contention.

Figure 9 presents the processing �ow of the contention-aware
resource allocator. As shown in the �gure, the resource allocator
allocates enough computational resources to QoS tasks directly
(Section 6.1). The resource allocator then divides and allocates
remaining computational resources to non-QoS tasks by modeling
the allocation problem as a knapsack problem (Section 6.2).

Laius ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

6.1 Allocating resource for user-facing queries
When a user-facing query q is received, Laius obtains its input data
size and estimates its duration with various computational resource
quotas using the duration model trained in Section 5.1.

The end-to-end latency of q is composed of data transfer time,
and task processing time. For query q, let Tt�t , Tpcie , and Tp rep-
resent its QoS target, its data transfer time through PCIe bus, and
its actual processing time. Only if Tpcie + Tp  Tt�t , the QoS of
q is satis�ed. Tpcie can be collected when q transfers its data to
the accelerator. Only when Equation 3 is satis�ed, q returns before
its QoS target. In Equation 3, Tt�t , Tpcie are already known when
Laius allocates computational resources for q.

Tp  Tt�t �Tpcie (3)

By comparing Tt�t �Tpcie with the predicted duration of q us-
ing various computational resource quotas, Laius identi�es the
“just-enough” computational resources for query q. The contention-
aware resource allocator then allocates “just-enough” computa-
tional resource to q. By default, all QoS tasks in q run with the same
computational resource quota.

6.2 Allocating resource for non-QoS tasks
The remaining computational resources are then allocated to batch
applications. Because a single batch application may not be able to
utilize rest computational resources fully, multiple batch applica-
tions can be co-located with a user-facing service.It is non-trivial to
allocate remaining resources to non-QoS tasks, because non-QoS
tasks may contend for shared resourceswith query q, resulting in
the QoS violation of q.

When Laius allocates remaining computational resources to non-
QoS tasks, it aims to achieve the best throughput for non-QoS tasks
without incurring serious global memory bandwidth contention
with QoS tasks. As mentioned in Section 4, the overall throughput
of non-QoS tasks is translated to a quantitative IPC goal, which
means quotas allocated to non-QoS tasks can be derived from an
optimization problem related to its feasible solutions. In more detail,
this problem can be formalized to be a single-objective optimiza-
tion problem [14], where the objective function is maximizing the
sum of non-QoS tasks’ IPCs and the constraint is global memory
bandwidth.

There are two constraints to this optimization problem. First of
all, the accumulated global memory bandwidth usage of co-running
tasks should be smaller than the available global memory bandwidth
of the accelerator to avoid serious bandwidth contention. Second,
the computational resource quota allocated to concurrent tasks
should not exceed overall available computational resources. Sup-
pose there are n non-QoS tasks waiting in the ready task pool. Let
BW , R and xQoS represent the available global memory bandwidth,
overall computational resources and the computational resources
allocated to the QoS task in query q respectively. Equation 4 ex-
presses the object and the constraints in the optimization problem.
In the equation, xi is the computational resource quota allocated to
the i-th non-QoS task, f (xi) and �(xi) are the predicted IPC and the
predicted global memory bandwidth usage of the i-th non-QoS task

when it is allocated xi computational resource quota respectively.

Object: MAXIMIZE � =
Xn

i=1
f (xi), 0  xi  R

Constraint-1:
Xn

i=1
�(xi) + �(xQoS)  BW

Constraint-2:
Xn

i=1
xi + xQoS = R

(4)

Many algorithms can be applied to solve the optimization prob-
lem. However, it is time-consuming to resolve a continuous opti-
mization problem [29]. To reduce the time needed to �x the issue, we
discretize computational resources that can be allocated to di�erent
tasks and turn the continuous optimization problem into a discrete
optimization problem, thus signi�cantly reduce the computational
complexity to identify the appropriate computational resource al-
location. The assumption we made for discretizing computational
resources is that: the accelerator has computational resources of
N quotas, and each quota has 100

N % computational resources. If a
task is allocated k quotas of computational resources, 100⇥k

N % of
computational resources are allocated to this task.

The discrete optimization problem can be further modeled to
be a complete knapsack problem [39]. Let Nf r ee represent the
quota of computational resources that is not used by QoS tasks.
Suppose there are m non-QoS tasks in the ready task pool. The
above discrete optimization problem is the same to �nd the solution
that can maximize the value of items in a backpack of capacity
Nf r ee , while keeping the weight of the items smaller than Nf r ee .
In the knapsack problem, there arem items corresponding to them
non-QoS tasks. The weight of an item is the computational resource
quota of a non-QoS task, and the value of the item is its IPC with
the given computational resource quota. As shown in Equation 5,
the complete knapsack problem can be further modeled using 0/1
knapsack problem. In the equation, V [i][j] is the maximum value
of the items in the backpack when the capacity of the backpack
is j and puts i items in the backpack,m is the weight of the i-th
item, IPCi,m is the achieved IPC of the i-th non-QoS task when
it is allocatedm quota of computational resources. We adopt the
dynamic programming technique to resolve this complete knapsack
problem.

V [i][j] =max (V [i � 1][j �m] + I PCi,m);m 2 [1, ..., j] (5)

It is worth noting that a non-QoS task may get no resource
according to the above solution. In this case, the non-QoS task
stays in the ready task pool and waits to be executed when other
tasks release some computational resource quota. Moreover, if the
identi�ed resource allocation does not obey the two constraints in
Equation 4, the resource allocator invalidates the allocation and
searches for another allocation that follows both constraints.

6.3 Enabling Resource Reallocation
The resource allocator needs to update the resource quota allocated
to each batch application during its execution. However, emerging
Volta MPS does not provide an interface to update the resource
quota allocated to a process during its lifetime.

To solve this problem, we propose process pool technique in Fig-
ure 10. As shown in the �gure, Laius launches a pool of processes
that are con�gured to use di�erent computational resource quota.

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Wei Zhang, et al.

Hook
40%

Task Queue

40% 40%40%40%
Not Late

Late

80%

Kernel pointer,
Device pointer,

Scalar
……

Process Pool

Processes with Different Resource quotas

60% 70%10% 80% 100%90%

Figure 10: Enabling resource reallocationusing process pool.

……t1 tk tn

Tnow

……t1' tk' tn'

Tnew

Time lineTsave

Completed task
Unexecuted task

Figure 11: Identifying a new computational resource quota
for a user-facing query to compensate the processing lag.
For a process p (executing a user-facing query or a batch appli-
cation), Laius intercepts all the tasks of p. If the computational
resource quota of its tasks is updated, the unexecuted tasks of p are
forwarded to run on the process with the expected resource quota.
Otherwise, its tasks are executed in p directly.

We intercept an accelerator task through function hooking tech-
nique. Laius hooks function “cudaLaunchKernel” and APIs in com-
mon libraries (e.g., cuDNN), and overrides their function pointers
using LD_PRELOAD environment variable. The new implemen-
tations of cudaLaunchKernel and the APIs parse and forward the
kernel/API pointer, the device (GPU) pointer and parameters to a
remote process in the process pool for invocation. Meanwhile, the
memory of the executable tasks is also mapped into the address
space of the remote process, so that the remote process can execute
the task using the received kernel/API pointer.

7 PROGRESS-AWARE LAG COMPENSATION
The contention-aware resource allocator eliminates the QoS vi-
olation of user-facing queries due to global memory bandwidth
contention by limiting the global memory bandwidth usage of non-
QoS tasks. Besides the contention on global memory bandwidth,
concurrent tasks also contend for shared memory and L1 cache so
that the contention cannot be explicitly managed. The contention
may result in the slow progress of user-facing queries. To this
end, we propose a progress-aware lag compensator to monitor the
progress of user-facing queries and mitigates the possible QoS vio-
lation by adjusting the compute resource quota allocated to each
QoS task.

During the execution of a user-facing query q, the compensator
periodically checks whether it runs slower than expected due to
resource contention. Suppose there are n QoS tasks in query q in
total and k of them have completed. Let t1, ..., tk represent the
predicted duration, and tr1 , ..., t

r
k represent the actual duration of

the k completed tasks. If
Pk
i=1 (t

r
i � ti) is larger than 0, query q

Table 2: Benchmarks used in the experiment.

Benchmark Suite Workloads
Tonic suite [20] face, dig, imc, ner, pos, chk

Rodinia [9] BFS, B+tree, PF (path�nder), NW, LUD
HS (hotspot), MD (lavaMD), MY (myocyte)

runs slower than expected and may su�er from QoS violation. In
this scenario, the lag compensator identi�es a new computational
resource quota for q so that it can return before the QoS target.

Figure 11 shows the way to identify a new computational re-
source quota for queryq. LetTnow andTnew represent the predicted
durations of q with the current computational resource quota and
the new identi�ed computational resource quota, respectively. If
Equation 6 is satis�ed, query q can return before the QoS target.
In the equation t 0i represents the predicted duration of the i-th
completed task with the new resource quota. Observed from the
equation, Tnow �Tnew calculates the overall reduced duration of
query q with the new resource quota. Tsa�e =

Pk
i=1 (ti � t 0i) calcu-

lates the reduced duration of executing the k already completed
tasks. Therefore, Tnow �Tnew �Tsa�e is the reduced duration of
the n � k unexecuted tasks in query q. If the reduced duration
the unexecuted tasks is larger than the lag of the completed tasksPk
i=1 (t

r
i � ti), query q is able to return before the QoS task.

Tnow �Tnew �
Xk

i=1
(ti � t 0i) �

Xk

i=1
(t ri � ti) (6)

Based on Equation 6, the lag compensator is able to identify
the new “just-enough” computational resource quota for query q.
In the equation, Tnow and Tnew can be predicted with the query
durationmodel, ti and t 0i can be predictedwith the task performance
model, tri is measured at runtime directly. Once the new quota is
identi�ed, Laius adopts process pool proposed in Section 6.3 to
run the unexecuted tasks of query q with the new resource quota.
Meanwhile, the computational resource quotas allocated to non-
QoS tasks are also updated simultaneously.

If the progress of q is not lag behind the expected progress any
more with the new quota, the resource quota allocated to q rolls
back to its original quota. In this way, Laius ensures thatq completes
before the QoS target, and minimizing the resource used by it.

8 EVALUATION OF LAIUS
8.1 Experimental Setup
Benchmarks. We use benchmarks in Tonic suite [20] as user-
facing services and use benchmarks in Rodinia benchmark suite [9]
as batch applications. Table 2 gives a brief description of the bench-
marks. In our experiments, we use 6 user-facing servicesfrom Tonic
suite as user-facing services; use 8 representative batch applications
from Rodinia, in which we categorize the �rst type as computation-
intensive works (HS, LUD, MY) due to the possibility of high cache
contention and the second type as memory-intensive workloads
(BFS, B+ tree, NW, PF, MD) due to the heavy memory tra�c [25].

Hardware and software. The experiments are carried out on a
machine equipped with one Nvidia GPU RTX 2080Ti. The detailed
setups are summarized in Table 3. Note that Laius does not rely
on any special hardware features of 2080Ti and is easy to be set
up on other GPUs with Volta or Turing architecture. From the

Laius ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

Figure 12: The normalized throughput of batch applications at co-location with Baymax and Laius.

Table 3: Hardware and software speci�cations.

Speci�cation

Hardware Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
GeForce RTX 2080Ti

Software Ubuntu 16.04.5 LTS with kernel 4.15.0-43-generic
CUDA Driver 410.78 CUDA SDK 10.0 CUDNN 7.4.2

Figure 13: The 99%-ile latency of user-facing services nor-
malized to their QoS targets in the 48 co-locations.

Turing architecture Whitepaper, we can see that the maximum
global memory bandwidth provided by 2080Ti is 616GB/s.

Throughout our experiments, the QoS target is de�ned as the
99%-ile latency, and the utilization of the accelerator is calculated as
the ratio of the throughput of batch applications normalized to their
throughput when they run alone on the experimental platform.

8.2 QoS and Throughput
In this section, we evaluate the e�ectiveness of Laius in maximizing
the accelerator throughput while ensuring the QoS of requirement
emerging user-facing tasks. We compare Laius with Baymax [11], a
runtime system that improves accelerator utilization while ensuring
the QoS of user-facing services for traditional non-preemptive time-
sharing accelerators. Baymax predicts the duration of every task
and reserves enough GPU time slices for user-facing queries. If
the duration a non-QoS task is shorter than the QoS headrooms
of user-facing queries, the non-QoS task is issued. Otherwise, the
non-QoS task is blocked. In our experiment, we con�gure each of
the co-located application to use 100% of computational resources
for Baymax, to set up an environment that it works.

Figure 13 presents the 99%-ile latency of user-facing services
normalized to their QoS target when they are co-located with batch
applications. There are overall 6 ⇥ 8 = 48 co-location pairs (6 user-
facing services and 8 batch applications). Observed from this �gure,
both Laius and Baymax ensure the QoS of user-facing services. On

Figure 14: The change of resource quota allocated to a user-
facing query imc when it is co-located with BFS.

the contrary, the even allocation and priority allocation in Figure 2
results in QoS violation of user-facing services.

Figure 12 shows the normalized throughput of batch applications
at co-location with Baymax and Laius. Observed from this �gure,
batch applications in all the 6 ⇥ 8 = 48 co-locations achieve higher
throughput with Laius than Baymax. Speci�cally, Laius achieves
the throughput of batch applications 70.3%, while Baymax achieves
the throughput of batch applications 49.5% on average. Laius im-
proves the throughput of batch applications by 20.8% at co-location
compared with Baymax.

Laius can allocate computational resources to run di�erent tasks
simultaneously while Baymax runs tasks sequentially. Adopt spa-
tial multitasking, Laius can squeeze more computational resource
to execute batch applications. Space sharing often convey better
resource utilization than time sharing when a single task cannot
fully utilize all the resources [43].

As an example, Figure 14 shows the change of resource quota
during the execution of a user-facing query imc, when it is co-
located with batch applications BFS. Observed from the �gure, when
a query q of imc is received, the performance predictor �nds that
40% of the computational resource is “just-enough” for it. During
the execution of q, the lag compensator �nds that the query runs
slower than expected. In the case, the compensator calculates it a
new resource quota 60%, and process the remaining tasks of the
query using the new quota. Later, the progress of q is not lag behind
expected, and the quota rolls back to the original 40%. In this way,
Laius ensures that the query face completes before the QoS target,
and minimizing the resource used by query q.

8.3 E�ectiveness of Constraining the Global
Memory Bandwidth Contention

Laius predicts the global memory bandwidth requirements of all
tasks and makes sure that the overall global memory bandwidth
usage of the concurrent tasks is smaller than the peak available

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Wei Zhang, et al.

Figure 15: The 99%-ile latency of user-facing services normalized to the QoS target with Laius-NB and Laius-NC.

global memory bandwidth in the accelerator. To evaluate the e�ec-
tiveness of this constraint in eliminating QoS violation due to global
memory bandwidth contention, we compare Laius with Laius-NB,
a system that disables the global memory bandwidth constraints
when allocating computational resources to non-QoS tasks.

Figure 15 presents the 99%-ile latency of user-facing services
at co-location in Laius-NB. Observed from this �gure, user-facing
services in 25 out of the 48 co-locations su�er from QoS violation
in Laius-NB. For instance, dig su�ers from up to 2X QoS viola-
tion when it is colocated with MY. The QoS violation is due to
the unmanaged global memory bandwidth contention. When the
non-QoS tasks in MY co-runs with QoS tasks in dig, even if dig
should be able to complete before the QoS target when it runs alone,
the global memory bandwidth contention results in serious perfor-
mance degradation of the QoS tasks. Although the lag compensator
can allocate more resources to the unexecuted tasks of dig, it is
possible that the lag is too long to be compensated. By constraining
the global memory bandwidth contention, the lag tends to be short,
thus it can be easily compensated if necessary.

For some co-location pairs, the QoS of user-facing services is
satis�ed using Laius-NB. This is because the co-located applica-
tions in these pairs do not contend for global memory bandwidth
seriously. In this case, with the precise performance predictor and
lag compensator, Laius-NB is enough to ensure the QoS of user-
facing services if the co-located applications are not global memory
bandwidth intensive applications.

8.4 E�ectiveness of the Lag Compensator
In this section, we verify the need for the compensation mechanism.
We remove the compensation part of laius and test the system. The
�gure 15 shows the existence of QoS violation in Laius without the
compensator. It implies that in addition to the contention of band-
width and computing resources, there is other resource contention,
such as shared memory contention.

Laius monitors the progress of user-facing queries at co-location
and allocates more resources to a slow query to compensate for
the processing lag. To evaluate this design choice, Figure 15 also
presents the 99%-ile latency of user-facing services at co-location
in Laius-NC, a system that disables the lag compensator in Laius.

Observed from Figure 15, user-facing services in 18 out of the 48
co-locations su�er from QoS violation in Laius-NC. For instance,
dig su�ers from up to 2X QoS violation when it is colocated with
BFS. The QoS violation is due to contention on other unmanaged
shared resources.As we mentioned before, besides global memory

bandwidth, tasks of di�erent applications may run in the same
SMs, thus share the shared memory and L1 cache in the SM. In this
scenario, even if the performance interference from global memory
bandwidth is eliminated, the contention on shared memory and L1
cache may also result in the performance degradation of co-located
QoS tasks. Without the lag compensator, the degradation results in
the QoS violation of user-facing services.

8.5 Overhead of Laius
The main overhead of Laius is from the process pool. Firstly, to
maintain the consistency of data across the origin process and the
processes in the process pool, synchronization is essential. We re-
duce the times of synchronization by accurately scheduling, other
than switching between processes with di�erent quota frequently.
Secondly, we adopt the CUDA IPC and other techniques to share
GPU resources between processes, which consume extra time in
execution. But, these additional operations can be overlapped(e.g.,
execution for sharing same GPU device pointer only needs to be ex-
ecuted once, the �rst time hooked). Finally, communications among
origin process, scheduler and process pool also have a signi�cant
e�ect on overhead. Overall, switching the execution resource quota
of the task through the process pool we designed, the overhead is
less than 4%.

9 CONCLUSION
Laius improves the hardware utilization in spatial multitasking ac-
celerators while guaranteeing the QoS requirement of user-facing
applications. To achieve this purpose, Laius enables precise task
duration prediction, contention-aware resource allocation, and
progress-aware lag compensator. Through evaluating Laius with
emerging user-facing services, we demonstrate the e�ectiveness of
Laius in eliminating QoS violation due to insu�cient computational
resource, global memory bandwidth contention, and contentions on
other unmanaged shared resources. Laius improves the throughput
of batch applications at co-location by 20.8% on average compared
with state-of-the-art techniques, without violating the QoS of 99%-
ile latency for user-facing services.

10 ACKNOWLEDGEMENT
This work is partially sponsored by the National R&D Program of
China(No. 2018YFB1004800), the National Natural Science Foun-
dation of China(NSFC)(61602301,61632017,61702328,61872240), an
NSF CAREER Award(CNS-1750760) and CCF-1823005.

Laius ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

REFERENCES
[1] [n. d.]. Apple Siri. https://www.apple.com/siri/.
[2] [n. d.]. Google Translate. https://translate.google.com/.
[3] [n. d.]. Nvidia Night Compute. https://docs.nvidia.com/nsight-compute/

NsightCompute/index.html.
[4] [n. d.]. Prisma. https://prisma-ai.com/.
[5] Jacob T Adriaens, Katherine Compton, Nam Sung Kim, and Michael J Schulte.

2012. The case for GPGPU spatial multitasking. In High Performance Computer
Architecture (HPCA), 2012 IEEE 18th International Symposium on. IEEE, 1–12.

[6] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The datacenter as a
computer: An introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture 8, 3 (2013), 1–154.

[7] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The datacenter as a
computer: An introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture 8, 3 (2013), 1–154.

[8] Andrei Broder. 2002. A taxonomy of web search. In ACM Sigir forum, Vol. 36.
ACM, 3–10.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Shea�er, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. InWorkload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. Ieee, 44–54.

[10] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and
Lingjia Tang. 2017. Prophet: Precise qos prediction on non-preemptive accel-
erators to improve utilization in warehouse-scale computers. ACM SIGARCH
Computer Architecture News 45, 1 (2017), 17–32.

[11] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax: Qos
awareness and increased utilization for non-preemptive accelerators in ware-
house scale computers. ACM SIGARCH Computer Architecture News 44, 2 (2016),
681–696.

[12] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2016.
DianNao family: energy-e�cient hardware accelerators for machine learning.
Commun. ACM 59, 11 (2016), 105–112.

[13] Sharan Chetlur, Cli� Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: E�cient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[14] Carlos A Coello Coello. 2000. Treating constraints as objectives for single-
objective evolutionary optimization. Engineering Optimization+ A35 32, 3 (2000),
275–308.

[15] Je�rey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74–80.

[16] Je�rey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74–80.

[17] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware sched-
uling for heterogeneous datacenters. In ACM SIGPLAN Notices, Vol. 48. ACM,
77–88.

[18] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-e�cient and
QoS-aware cluster management. ACM SIGPLAN Notices 49, 4 (2014), 127–144.

[19] Glenn A Elliott, Bryan C Ward, and James H Anderson. 2013. GPUSync: A
framework for real-time GPU management. In 2013 IEEE 34th Real-Time Systems
Symposium. IEEE, 33–44.

[20] Johann Hauswald, Yiping Kang, Michael A Laurenzano, Quan Chen, Cheng
Li, Trevor Mudge, Ronald G Dreslinski, Jason Mars, and Lingjia Tang. 2015.
DjiNN and Tonic: DNN as a service and its implications for future warehouse
scale computers. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual
International Symposium on. IEEE, 27–40.

[21] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An
introduction to statistical learning. Vol. 112. Springer.

[22] Nicola Jones. 2014. Computer science: The learning machines. Nature News 505,
7482 (2014), 146.

[23] Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md Wasi-ur
Rahman, Nusrat S Islam, Xiangyong Ouyang, Hao Wang, Sayantan Sur, et al.
2011. Memcached design on high performance rdma capable interconnects. In
2011 International Conference on Parallel Processing. IEEE, 743–752.

[24] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa. 2011.
TimeGraph: GPU scheduling for real-time multi-tasking environments. In Proc.
USENIX ATC. 17–30.

[25] Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and Martin Herbordt.
2014. An investigation of uni�ed memory access performance in cuda. In High
Performance Extreme Computing Conference (HPEC), 2014 IEEE. IEEE, 1–6.

[26] Haeseung Lee, Al Faruque, and Mohammad Abdullah. 2014. GPU-EvR: Run-time
event based real-time scheduling framework on GPGPU platform. In Proceedings
of the conference on Design, Automation & Test in Europe. European Design and
Automation Association, 220.

[27] Teng Li, VikramKNarayana, and Tarek El-Ghazawi. 2015. Reordering GPU kernel
launches to enable e�cient concurrent execution. arXiv preprint arXiv:1511.07983
(2015).

[28] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving resource e�ciency at scale. In
ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 450–462.

[29] Szymon Łukasik and Sławomir Żak. 2009. Fire�y algorithm for continuous
constrained optimization tasks. In International conference on computational
collective intelligence. Springer, 97–106.

[30] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou So�a.
2011. Bubble-up: Increasing utilization in modern warehouse scale computers via
sensible co-locations. In Proceedings of the 44th annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 248–259.

[31] NVIDIA. 2012. Sharing a GPU between MPI processes: multi-process ser-
vice(MPS).

[32] NVIDIA. 2015. Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.
htmltopic_6_1_2.

[33] CUDA Nvidia. 2008. Cublas library. NVIDIA Corporation, Santa Clara, California
15, 27 (2008), 31.

[34] C Nvidia. 2012. Nvidias next generation cuda compute architecture: Kepler gk110.
Whitepaper (2012) (2012).

[35] Sreepathi Pai, Matthew J Thazhuthaveetil, and Ramaswamy Govindarajan. 2013.
Improving GPGPU concurrency with elastic kernels. In ACM SIGPLAN Notices,
Vol. 48. ACM, 407–418.

[36] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. 2017. Dynamic resource
management for e�cient utilization of multitasking GPUs. ACM SIGOPS Operat-
ing Systems Review 51, 2 (2017), 527–540.

[37] Vinicius Petrucci, Michael A Laurenzano, John Doherty, Yunqi Zhang, Daniel
Mosse, Jason Mars, and Lingjia Tang. 2015. Octopus-man: Qos-driven task
management for heterogeneousmulticores in warehouse-scale computers. In 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 246–258.

[38] S Rasoul Safavian and David Landgrebe. 1991. A survey of decision tree classi�er
methodology. IEEE transactions on systems, man, and cybernetics 21, 3 (1991),
660–674.

[39] Sartaj Sahni. 1975. Approximate algorithms for the 0/1 knapsack problem. Journal
of the ACM (JACM) 22, 1 (1975), 115–124.

[40] George AF Seber and Alan J Lee. 2012. Linear regression analysis. Vol. 329. John
Wiley & Sons.

[41] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. 2014. GPUvm:
Why not virtualizing GPUs at the hypervisor?. In USENIX Annual Technical
Conference. 109–120.

[42] Lingjia Tang, Jason Mars, and Mary Lou So�a. 2012. Compiling for niceness:
Mitigating contention for qos in warehouse scale computers. In Proceedings of
the Tenth International Symposium on Code Generation and Optimization. ACM,
1–12.

[43] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and
Minyi Guo. 2016. Simultaneous multikernel GPU: Multi-tasking throughput
processors via �ne-grained sharing. In High Performance Computer Architecture
(HPCA), 2016 IEEE International Symposium on. IEEE, 358–369.

[44] Bo Wu, Xu Liu, Xiaobo Zhou, and Changjun Jiang. 2017. FLEP: Enabling �exible
and e�cient preemption on GPUs. ACM SIGOPS Operating Systems Review 51, 2
(2017), 483–496.

[45] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-�ux:
Precise online qos management for increased utilization in warehouse scale
computers. In ACM SIGARCH Computer Architecture News, Vol. 41. ACM, 607–
618.

[46] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. 2016. DNN-
based prediction model for spatio-temporal data. In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems. ACM, 92.

[47] Yunqi Zhang, Michael A Laurenzano, Jason Mars, and Lingjia Tang. 2014. Smite:
Precise qos prediction on real-system smt processors to improve utilization in
warehouse scale computers. In Microarchitecture (MICRO), 2014 47th Annual
IEEE/ACM International Symposium on. IEEE, 406–418.

[48] Wenyi Zhao, Quan Chen, and Minyi Guo. 2018. KSM: Online Application-Level
Performance Slowdown Prediction for Spatial Multitasking GPGPU. IEEE Com-
puter Architecture Letters 17, 2 (2018), 187–191.

